Cross-talk between tyrosine kinase and G-protein-linked receptors. Phosphorylation of beta 2-adrenergic receptors in response to insulin.
نویسندگان
چکیده
Protein kinases play a pivotal role in the propagation and modulation of transmembrane signaling pathways. Two major classes of receptors, G-protein-linked and tyrosine kinase receptors not only propagate signals but also are substrates for phosphorylation in response to stimulation by agonist ligands. Insulin (operating via tyrosine kinase receptors) and catecholamines (operating by G-protein-linked receptors) are counterregulatory with respect to lipid and carbohydrate metabolism. How, on a cellular level, these two distinct classes of receptors may cross-regulate each other remains controversial. In the present work we identify a novel cross-talk between members of two distinct classes of receptors, tyrosine kinase (insulin) and G-protein-linked (beta-adrenergic) receptors. Treatment of DDT1 MF-2 hamster vas deferens smooth muscle cells with insulin promoted a marked attenuation (desensitization) of beta-adrenergic receptor-mediated activation of adenylylcyclase. Measured by immune precipitation of beta 2-adrenergic receptors from cells metabolically labeled with [32P]orthophosphate, the basal state of receptor phosphorylation was increased 2-fold by insulin. Phosphoamino acid analysis revealed that for insulin-stimulated cells, the beta 2-adrenergic receptors showed increased phosphorylation on tyrosyl and decreased phosphorylation on threonyl residues. Phosphorylation of the beta-adrenergic receptor was rapid and peaked at 30 min following stimulation of cells by insulin. beta-Adrenergic receptor phosphorylation and attenuation of catecholamine-sensitive adenylylcyclase provide a biochemical basis for the counterregulatory effects of insulin upon catecholamine action.
منابع مشابه
Yeast Ste2 receptors as tools for study of mammalian protein kinases and adaptors involved in receptor trafficking
BACKGROUND Mammalian receptors that couple to effectors via heterotrimeric G proteins (e.g., beta 2-adrenergic receptors) and receptors with intrinsic tyrosine kinase activity (e.g., insulin and IGF-I receptors) constitute the proximal points of two dominant cell signaling pathways. Receptors coupled to G proteins can be substrates for tyrosine kinases, integrating signals from both pathways. Y...
متن کاملCross talk between beta-adrenergic and bradykinin B(2) receptors results in cooperative regulation of cyclic AMP accumulation and mitogen-activated protein kinase activity.
Costimulation of G protein-coupled receptors (GPCRs) may result in cross talk interactions between their downstream signaling pathways. Stimulation of GPCRs may also lead to cross talk regulation of receptor tyrosine kinase signaling and thereby to activation of mitogen-activated protein kinase (MAPK). In COS-7 cells, we investigated the interactions between two particular mitogenic receptor pa...
متن کاملThe G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance.
AIMS Insulin (Ins) resistance (IRES) associates to increased cardiovascular risk as observed in metabolic syndrome. Chronic stimulation of beta-adrenergic receptors (betaAR) due to exaggerated sympathetic nervous system activity is involved in the pathogenesis of IRES. The cellular levels of G protein coupled receptor kinase 2 (GRK2) increase during chronic betaAR stimulation, leading to betaAR...
متن کاملCross-talk between receptors with intrinsic tyrosine kinase activity and alpha1b-adrenoceptors.
The effect of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) on the phosphorylation and function of alpha(1b)-adrenoceptors transfected into Rat-1 fibroblasts was studied. EGF and PDGF increased the phosphorylation of these adrenoceptors. The effect of EGF was blocked by tyrphostin AG1478 and that of PDGF was blocked by tyrphostin AG1296, inhibitors of the intrinsic tyr...
متن کاملProtein kinase C and protein tyrosine kinase activity contribute to mitogenic signaling by endothelin-1. Cross-talk between G protein-coupled receptors and pp60c-src.
Endothelin (ET) peptides are potent growth factors that bind to G protein-coupled receptors. Although short-term signals activated by ET receptors have been extensively characterized, relatively little is known about mitogenic signal transduction. We investigated the ET receptor subtype involved in mitogenic signaling in glomerular mesangial cells and the role of protein kinase C (PKC) and prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 36 شماره
صفحات -
تاریخ انتشار 1992